Типовий перелік засобів навчання та обладнання навчального і загального призначення для кабінетів природничо-математичних предметів загальноосвітніх навчальних закладів

1. Цей Типовий перелік визначає вимоги до засобів навчання та обладнання, якими повинні бути обладнані кабінети біології, географії, математики, фізики та хімії загальноосвітніх навчальних закладів, враховуючи вимоги новітніх технологій викладання предметів природничого циклу.

Цей Типовий перелік забезпечує єдині підходи і вимоги до рівня надання освітніх послуг природничо-математичного напряму та рівні умови здобуття освіти для всіх учнів, визначає загальні та спеціальні вимоги до матеріально-технічного обладнання кабінетів природничо-математичних предметів і є обов'язковим для засобів навчання та навчального обладнання, що будуть закуповуватися після набрання чинності цим наказом, для використання в загальноосвітніх навчальних закладах державної та комунальної форми власності та рекомендаційним для навчальних закладів іншої форми власності.

2. У цьому Типовому переліку терміни вживаються у таких значеннях:
блок – сукупність взаємопов’язаних елементів, що виконують певну функцію;
гербарій – колекція (зібрання) спеціально зібраних і засушених рослин, призначена для навчальних цілей;
засоби навчання – частина обладнання закладів освіти як сукупність матеріальних об’єктів, які використовуються як джерело знань та сприяють організації пізнавальної діяльності і виховному впливу на учнів;
інструменти навчальні – ручні та механізовані знаряддя або пристрої (обробні, монтажні, контрольно-вимірювальні, художні, садово-городні), призначені для виконання уміннями практичної роботи;
карта навчальна – картографічний твір встановленого формату, що побудований в картографічній проекції, узагальнений і виконаний у певній системі умовних позначень зображення поверхні Землі, іншого небесного тіла чи наземного простору з розміщеннями на них об’єктами реальної дійсності, зміст якого визначається навчальними програмами;
колекція – зібрання однорідних предметів, підібраних за родовими та систематизованих за видовими ознаками, яке використовується як навчально-научний посібник;
комплекс – системна комбінація будь-яких видів засобів навчання, обладнання, навчальних видань, функціонально пов’язаних між собою та організованих як єдине ціле для забезпечення досягнення визначеного навчально-виховної мети;
комплект – набір будь-яких видів засобів навчання, обладнання, навчальних видань, змістовно пов’язаних між собою та призначених для забезпечення досягнення визначеного навчально-виховної мети;
макет – різновид моделі навчальної, яка є об’ємно-просторовою композицією комплексу структурно взаємопов’язаних окремих об’єктів, що вивчається або використовується в навчально-виховному процесі;
меблі – рухоме майно або майно, яке на відміну від нерухомого можна переміщувати і яке використовується як обладнання загального призначення;
мікропрепарати – дрібні об’єкти, які важко розпізнати необхідним оком (циклі організми, клітини та зрії клітин і тканин рослин, тварин і людини) і які потребують використання електронної та оптичної апаратури;
модель навчальна – засіб навчання переважно демонстраційного типу, що спрощено відтворює об’єкт вивчення, якщо його неможливо або складно демонструвати в натуральному вигляді; об’ємне або площинне відображення (копія) об’єкта, процесу чи явища, взаємозв’язків між їх частинами, з більшою або меншою умовністю у відтворенні принципів, властивостей будови та функціонування, що вивчаються чи використовуються в навчально-виховному процесі;
муляж – різновид моделі навчальної, який максимально наближено відтворює зовнішні властивості об’єкта, що вивчається, ігноруючи його внутрішню будову;
набір – сукупність однорідних предметів, які разом становлять щось ціле;
обладнання навчальне – частина засобів навчання як сукупність матеріальних об’єктів, які застосовуються для передачі навчальної інформації і в окремих випадках використовуються як джерело знань;
посуд – порожністі вироби зі скла, глини, пластмаси, металу та інших твердих матеріалів, призначені для зберігання речовин, лікарських препаратів тощо;

таблиця навчальна – друкований листовий наочний посібник, що містить цифровий чи текстовий матеріал, малюнки, графічні зображення для ілюстрації теми чи розділу навчальної програми з розташуванням їх за певною системою і призначенням для демонстрації в умовах навчальної аудиторії;

техніче завдання – документ, що встановлює основні призначення, показники якості, техніко-економічні та спеціальні вимоги до виробу, обсягу, стадії розроблення та складу конструкторської документації.

3. Оснащення загальноосвітнього навчального закладу повинно відповідати вимогам:

державних освітніх стандартів;

необхідності і достатності оснащення освітнього процесу для повної реалізації основних освітніх програм;

комплектності і модульності, що дозволяють реалізовувати різні освітні програми, з урахуванням реальних особливостей загальноосвітніх навчальних закладів та основних освітніх програм, різних робочих програм та навчально-методичних комплексів, напрямів позаурочної діяльності, а також інших потреб учасників освітнього процесу;

відповідності санітарно-гігієнічним вимогам, пожежній та електробезпеці, вимогам охорони здоров‘я учнів і охорони праці працівників освітніх установ;

універсальність – можливості застосування навчального обладнання для вирішення комплексу завдань у навчальній і позаурочній діяльності, в різних предметних галузях, з використанням різних методик навчання тощо;

забезпеченості ергономічного режиму роботи учасників освітнього процесу;

узгодженості спільного використання (змістового, функціонального, технологічного, програмного тощо).

4. Комплектація кабінетів природно-математичних предметів шкільними меблями та навчально-методичними матеріалами здійснюється відповідно до Положення про навчальні кабінети з природно-математичних предметів загальноосвітніх навчальних закладів, затвердженого наказом Міністерства освіти і науки, молоді та спорту від 14 грудня 2012 року № 1423, зареєстрованого у Міністстерстві юстиції України 03 січня 2013 року за № 44/22576.
5. Засоби навчання та навчальне обладнання, що постійно поставляються та використовуються у навчально-виховному процесі загальноосвітніх навчальних закладів, повинні мати на момент поставки висновок державної санітарно-епідеміологічної експертизи, та/або технічний паспорт на виріб, та/або декларацію про відповідність вимогам технічних регламентів; бути укомплектованими інструкціями про використання та зберігання викладенними українською мовою, та обов’язковим методичним забезпеченням для демонстраційних, практичних та лабораторних робіт відповідно до навчальної програми.

6. Комп’ютерне та мультимедійне обладнання для кабінетів біології, географії, математики, фізики та хімії повинно відповідати вимогам, наведеним у таблиці 1:

<table>
<thead>
<tr>
<th>Таблиця 1</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Назва засобу/обладнання</td>
<td>Технічне завдання</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Комп’ютерне та мультимедійне обладнання</td>
<td></td>
</tr>
<tr>
<td>1. Мультимедійне обладнання</td>
<td></td>
</tr>
<tr>
<td>1.1. Комплект мультимедійного обладнання. Тип 1</td>
<td></td>
</tr>
<tr>
<td>А) Інтерактивна дошка:</td>
<td></td>
</tr>
<tr>
<td>дошка прямого проектії з можливістю настінного кріплення; робоча поверхня білого кольору, тверда, зі спеціальним антиблисковим покриттям, стійким до ушкоджень, розрахована, зокрема, для письма на ній маркерами на водяний основі; мінімальний розмір інтерактивного проектійного зображення активної поверхні дошки – не менше ніж діагональ 77" (195 см) при співвідношенні сторін 4:3 (ширина 156 см, висота 117 см). Розмір проектійного зображення має збігатися з активною поверхнею дошки відповідно до її розмірів та аспектного співвідношення; дошка повинна забезпечувати можливість управління контентом безпосередньо за допомогою дотиків пальців руки або маркера; дотикова технологія дошки повинна підтримувати: не менше 6-ти одночасних дотиків, стандартні функції миші, принаймні лівої та правої кнопок миші у точці дотику до активної поверхні; функцію multi-touch; роздільна здатність позиціонування дотику – не менше ніж 4000×4000 точок; тип інтерфейсу – USB; довжина інтерфейсного кабелю – не менша, ніж необхідна для підключення пристрою до персонального комп’ютера вчителя у місці його встановлення; підключення дошки до персонального комп’ютера вчителя; гарантія на дошку не менше 3 років</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Б) Мультимедійний проектор з короткофокусним об’єктивом:</td>
<td></td>
</tr>
<tr>
<td>світловий потік не менше 2500 ANSI ліюменів;</td>
<td></td>
</tr>
<tr>
<td>роздільна здатність проектора повинна бути не менше XGA (1024 х 768 пікселів) або WXGA (1280 х 800 пікселів);</td>
<td></td>
</tr>
<tr>
<td>аспектне співвідношення 4:3 або 16:9, 16:10;</td>
<td></td>
</tr>
<tr>
<td>ресурс роботи лампи не менше 5000 годин в стандартному режимі;</td>
<td></td>
</tr>
<tr>
<td>проектор повинен комплектуватись підводом;</td>
<td></td>
</tr>
<tr>
<td>проектор встановлюється на спеціальному підвісі, який кріпиться безпосередньо над верхнім краєм інтерактивної дошки до стіни або до стелі;</td>
<td></td>
</tr>
<tr>
<td>відстань від об’єктива проектора до площини проекції не більше 1 метра;</td>
<td></td>
</tr>
<tr>
<td>довжина інтерфейсного кабелю - не менша, ніж необхідна для підключення пристрою до портативного комп’ютера вчителя у місці його встановлення;</td>
<td></td>
</tr>
<tr>
<td>підключення здійснюється до графічного адаптера портативного комп’ютера вчителя;</td>
<td></td>
</tr>
<tr>
<td>гарантія на проектор не менше 3-х років;</td>
<td></td>
</tr>
<tr>
<td>гарантія на лампу проектора не менше 1-го року або 1000 годин в робочому режимі</td>
<td></td>
</tr>
<tr>
<td>В) Базове програмне забезпечення для інтерактивної дошки та мультимедійного проектора з короткофокусним об’єктивом:</td>
<td></td>
</tr>
<tr>
<td>для створення, перегляду та програвання інтерактивного навчального контенту;</td>
<td></td>
</tr>
<tr>
<td>сумісне з операційною системою комп’ютера вчителя;</td>
<td></td>
</tr>
<tr>
<td>підтримує імпорт створених файлів різних форматів;</td>
<td></td>
</tr>
<tr>
<td>є можливість змінювати об’єкт (рухати, клонувати, перевертати, змінювати розмір, блокувати, редагувати, робити прозорим) за допомогою стандартних засобів програмного забезпечення;</td>
<td></td>
</tr>
<tr>
<td>інструмент запису екрана повинен мати можливість записати (зберегти) весь робочий стіл, обрану зону або обране вікно;</td>
<td></td>
</tr>
<tr>
<td>підтримує українську мову;</td>
<td></td>
</tr>
<tr>
<td>має функцію автоматичного оновлення</td>
<td></td>
</tr>
<tr>
<td>1.2. Комплект мультимедійного обладнання. Тип 2</td>
<td></td>
</tr>
<tr>
<td>А) Мультимедійний проектор з інтерактивними функціями:</td>
<td></td>
</tr>
<tr>
<td>світловий потік не менше 2500 ANSI ліюменів;</td>
<td></td>
</tr>
<tr>
<td>роздільна здатність проектора повинна бути не менше XGA (1024 х 768 пікселів) або WXGA (1280 х 800 пікселів);</td>
<td></td>
</tr>
<tr>
<td>аспектне співвідношення 4:3 або 16:9, 16:10;</td>
<td></td>
</tr>
<tr>
<td>ресурс роботи лампи не менше 5000 годин в стандартному режимі;</td>
<td></td>
</tr>
<tr>
<td>комплект електронних маркерів;</td>
<td></td>
</tr>
<tr>
<td>комплект для підвісу (кріплення);</td>
<td></td>
</tr>
<tr>
<td>відстань від об’єктива проектора до площини проекції не більше 1 метра;</td>
<td></td>
</tr>
<tr>
<td>довжина інтерфейсного кабелю - не менша, ніж необхідна для підключення пристрою до портативного комп’ютера вчителя у місці його встановлення;</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>підключення здійснюється до графічного адаптера портативного комп'ютера вчителя;</td>
<td></td>
</tr>
<tr>
<td>гарантія на проектор не менше 3-х років;</td>
<td></td>
</tr>
<tr>
<td>гарантія на лампу проектора не менше 1-го року або 1000 годин в робочому режимі</td>
<td></td>
</tr>
<tr>
<td>Б) Маркерна дошка для мультимедійного проектора з інтерактивними функціями:</td>
<td></td>
</tr>
<tr>
<td>робоча поверхня матова, білого кольору, розрахована у тому числі для письма на ній</td>
<td></td>
</tr>
<tr>
<td>маркерами на водяній основі;</td>
<td></td>
</tr>
<tr>
<td>розмір повинен відповідати розміру інтерактивної проекції проектора, але діагональ не</td>
<td></td>
</tr>
<tr>
<td>менше 77" (195 см) при співвідношенні сторін 4:3, 16:9, 16:10</td>
<td></td>
</tr>
<tr>
<td>В) Базове програмне забезпечення для мультимедійного проектора з інтерактивними</td>
<td></td>
</tr>
<tr>
<td>функціями:</td>
<td></td>
</tr>
<tr>
<td>для створення та перегляду інтерактивного навчального контенту;</td>
<td></td>
</tr>
<tr>
<td>суміші з операційною системою комп'ютера вчителя;</td>
<td></td>
</tr>
<tr>
<td>наявність базових графічних інструментів: вибір типу та кольору маркера, базові</td>
<td></td>
</tr>
<tr>
<td>геометричні фігури (кільо, квадрат, трикутник), можливість зміни фоно робочої зони (в лінію, в</td>
<td></td>
</tr>
<tr>
<td>клітину);</td>
<td></td>
</tr>
<tr>
<td>підтримка одночасної роботи не менше 2-х користувачів (маркери);</td>
<td></td>
</tr>
<tr>
<td>можливість змінювати об’єкт (рухати, клонувати, перевертати, змінювати розмір,</td>
<td></td>
</tr>
<tr>
<td>редагувати) за допомогою стандартних засобів програмного забезпечення;</td>
<td></td>
</tr>
<tr>
<td>підтримує українську мову;</td>
<td></td>
</tr>
<tr>
<td>має функцію автоматичного або ручного оновлення</td>
<td></td>
</tr>
<tr>
<td>Г) Система інтерактивного опитування:</td>
<td></td>
</tr>
<tr>
<td>бездротовий пульт для вибору варіанта відповіді, не менше 12 клавіш;</td>
<td></td>
</tr>
<tr>
<td>модуль-приймач бездротового зв’язку з пультами;</td>
<td></td>
</tr>
<tr>
<td>сумка для зберігання та перенесення;</td>
<td></td>
</tr>
<tr>
<td>програмне забезпечення для створення, зберігання, відтворення та аналізу запитань різного</td>
<td></td>
</tr>
<tr>
<td>типу</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Г) Акустична система зовнішня або вбудована в проектор:</td>
<td></td>
</tr>
<tr>
<td>потужності: не менше ніж 10 Вт;</td>
<td></td>
</tr>
<tr>
<td>частота: не більше ніж 100 Гц-20000 Гц</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2. Кноп’ютерне обладнання</td>
<td></td>
</tr>
<tr>
<td>2.1. Навчальний комп’ютерний комплекс</td>
<td></td>
</tr>
<tr>
<td>А) Портативний комп’ютер вчителя (ноутбук):</td>
<td></td>
</tr>
<tr>
<td>процесор: Pentium 32xx або еквівалент;</td>
<td></td>
</tr>
<tr>
<td>відеoadapter: інтегрований відеoadapter Intel HD Graphics 4400 або еквівалент;</td>
<td></td>
</tr>
<tr>
<td>операцівна пам’ять: технологія не більше DDR3, частота не менше 1600 MHz, об’єм пам’яті</td>
<td></td>
</tr>
<tr>
<td>не менше ніж 4 Гб;</td>
<td></td>
</tr>
<tr>
<td>жорсткий диск: тип не більше SATA, швидкість шпиндела не менше 5400 об/хв, об’єм</td>
<td></td>
</tr>
<tr>
<td>пам’яті не менше ніж 500 Гб;</td>
<td></td>
</tr>
<tr>
<td>батарея: емність не менше ніж 6500 mAh або не менше 8 годин автономної роботи;</td>
<td></td>
</tr>
<tr>
<td>дисплей: діагональ не менше ніж 15", широкоформатний TFT або LCD, 16:9, максимальна</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>1</td>
<td>роздільна здатність не менше ніж 1366 x 768; WEB-камера: не менше ніж 0,3 Мр; роз’єми та порти: не менше ніж 2 x USB 3.0 та 1 x USB 2.0/HDMI/ LAN (RJ-45)/кард-рідер/ аудіо вихід; комунікації: наявність Bluetooth та/або Wi-Fi 802.11, LAN; операційна система: попередньо встановлена ліцензійна операційна система (ОС) з безкоштовними оновленнями, підтримкою роботи у локальній обчислювальної мережі з доменою організацією та україномовним інтерфейсом; пакет програмних засобів офісного призначення: сертифікований в Україні, з україномовним інтерфейсом, сумісний з обраною ОС, що підтримує роботу з основними файловими форматами (DOC, DOCX, RTF, XLS, XLSX, PPT, PPTX, HTML та MDB, ODT, ODS, ODP), а теж роботу з електронною поштою. Наявність україномовної підтримки; антивірус: попередньо встановлений антивірусний захист із здатністю виявлення та зневаження мережевих загроз, наявністю превентивних технологій, які забезпечують виявлення невідомих загроз; термін дії ліцензії не менше ніж 5 років</td>
</tr>
<tr>
<td>Б) Портативний комп’ютер учи́ня (ноутбук) або пристрій - трансформер (2 в 1):</td>
<td>процесор: Intel Bay Trail Atom Z37xx або еквівалент; відеоадаптер: інтегрований відеоадаптер Intel HD Graphics або еквівалент; операцівна пам’ять: з технологією не гірше ніж DDR3, об’єм пам’яті не менше ніж 2 Гб; жорсткий диск: тип не гірше SATA, швидкість швидкодії не менше 5400 об/хв, об’єм пам’яті не менше ніж 320 Гб або твердотільних флеш-накопичувач з об’ємом пам’яті не менше ніж 32 Гб; батарея: сністю не менше ніж 4000 mAh або не менше 6 годин автономної роботи; дисплей: з діагоналлю не менше ніж 10,1", тип сенсорний, не менше ніж 5 дотиків, TFT або LCD, максимальна роздільна здатність не менше ніж 1366 x768; WEB-камера: WEB-камера не менше ніж 1,3 Мр; роз’єми та порти не менше ніж 1 x USB 3.0 та 1 x USB 2.0/HDMI/кард-рідер/ аудіовихід; комунікації: наявність Bluetooth та/або Wi-Fi 802.11b/g/n; корпус: пиловідштовхуйкий, відповідність класу захищені не менше ніж IP41; операційна система: попередньо встановлена ліцензійна операційна система (ОС) з безкоштовними оновленнями, підтримкою роботи у локальній обчислювальної мережі з доменою організацією та україномовним інтерфейсом. Повноцінна підтримка роботи користувачів з обмеженими можливостями; пакет програмних засобів офісного призначення: пакет офісного прикладного програмного забезпечення з україномовним інтерфейсом, сумісний з обраною ОС, що підтримує роботу з основними файловими форматами (DOC, DOCX, RTF, XLS, XLSX, PPT, PPTX, HTML та MDB, ODT, ODS, ODP), а теж роботу з електронною поштою; антивірус: попередньо встановлений антивірусний захист із здатністю виявлення та зневаження мережевих загроз, наявністю превентивних технологій, які забезпечують</td>
</tr>
<tr>
<td>2</td>
<td>- 15°</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>виявлення невідомих загроз; термін дії ліцензії не менше ніж 5 років</td>
<td>Для організації шкільної наукової лабораторії з використанням вбудованої або зовнішньої WEB-камери шкільного ноутбука чи WEB-камери мікроскопа з можливістю відео- і фотофіксації різних явищ</td>
</tr>
</tbody>
</table>

2.2. Спеціалізоване програмне забезпечення
A) Програмне забезпечення для таких функцій:
прискорена зйомка з можливістю вибору інтервалу зйомки WEB-камерою і збору зафіксованих фотоznімків в сідній потік відео; відстежування переміщення одного або декількох об'єктів за кількома параметрами (зміщення, швидкість і прискорення) в режимі реального часу і фіксовання зміни у формі графіків; автоматичний запис у разі виявлення руху перед WEB-камерою

Б) Мікроскоп:
оцифровування показань пристроїв з лінійними, радіальними шкалами, цифровими дисплеями в режимі реального часу; створення карти руху об'єктів у досліджуваній області

В) Інтерактивні мультимедійні електронні освітні ресурси:
педагогічні програмні засоби, віртуальні лабораторії, мультимедійні підручники, електронні навчально-методичні комплекси у вигляді інтерактивного застосування з можливістю роботи в режимі без підключення до мережі Інтернет та функціоналом для конструювання уроків для усіх класів; система управління освітніми пристроями: додаток повністю надавати інструменти для відправлення та отримання уроків, адміністрування оцінки, контролю і активності учнів

2.3. Wi-fi роутер
Пристрій для забезпечення функціонування бездротової мережі класу із можливістю забезпечення безперебійної роботи до 30 одночасно підключених персональних пристроїв

2.4. Багатофункціональний пристрій (принтер-сканер-копір):
формат папера A4; принтер та копір для друку кольорових та чорно-білих документів; сканер кольорових та чорно-білих документів; швидкість друку не менше ніж 25 ст./хв; технологія стріменева або лазерна; стартовий комплект витратних матеріалів має забезпечувати не менше ніж 4000 видруків кольорових документів формату A4 із середнім заповненням сторінки не менше 5 %; витратні матеріали для цієї моделі принтера мають бути доступними для придбання в Україні

3. Демонстраційне обладнання
3.1. Панель демонстраційна
Презентаційний статичний комплект з устаткуванням для закріплення та демонстрації таблиць, карт, демонстраційних моделей та інших наочних посібників

1
4. Пристосування

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1. Дошка. Тип 1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Дошка маркерна, біла на металевій основі, може використовуватись як магнітна для кріплення демонстраційного обладнання, діагональ не менше 2 м.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Маркери для білої дошки (чорний, синій, зелений, червоний).</td>
<td></td>
<td></td>
<td>10 комп.</td>
</tr>
<tr>
<td></td>
<td>Губка для маркерної дошки.</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Набір магнітів для кріплення до дошки.</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Набір для кріплення дошки</td>
<td></td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

4.2. Дошка. Тип 2			1
	Дошка для крейді темно-зеленого, темно-коричневого чи чорного кольору, на одну, дві, чотири, п’ять робочих поверхні, може використовуватись як магнітна для кріплення демонстраційного обладнання, діагональ не менше 2 м.		
	Набір крейди для дошки (біла та кольорова).		
	Набір магнітів для кріплення до дошки.		
	Набір для кріплення дошки		

7. Цифрове вимірювальне обладнання, демонстраційне обладнання, обладнання для лабораторних робіт, мікропрепарати, прилади, набори, приладдя, цифрове обладнання, додаткове приладдя, реактиви та хімічне приладдя для кабінету біології повинні відповідати вимогам, наведеним у таблиці 2:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Цифрове вимірювальне обладнання</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1. Цифровий вимірювальний комп’ютерний комплекс для кабінету біології</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>А) Цифровий вимірювальний комп’ютерний комплекс для вчителя:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>цифровий вимірювальний комп’ютерний комплекс для кабінету біології підключається до USB-порту комп’ютера, має можливість бездротового та/або дротового способу під’єднання або має автономний режим роботи з безпосереднім вводом результатів на вбудований екран з можливістю подальшого їх перенесення для обробки до основного комп’ютера.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Комплекс супроводжується керівництвом з експлуатації, методичним посібником та програмним забезпеченням</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Демонстрування:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>дослідів, що підтверджують:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>фотосинтез; дихання; випаровування води;</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>транспорт речовин по рослинні;</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>вимірювання артеріального тиску;</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>обмін речовин і енергії в клітині;</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>фотосинтез</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
10. Цифрове вимірювальне обладнання, прилади демонстраційні, прилади механічні, набір посуду, набір інструменту, осцилограф, демонстраційне обладнання, прилади та приладдя, обладнання для лабораторних робіт, набори, обладнання загального призначення для кабінету фізики та астрономії повинні відповідати вимогам, наведеним у табліці 5:

<table>
<thead>
<tr>
<th>Назва засобу/обладнання</th>
<th>Технічне завдання</th>
<th>Демонстрація та лабораторні роботи (за навчальною програмою)</th>
<th>Кількість</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>1. Цифрове вимірювальне обладнання</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1. Цифровий вимірювальний комп'ютерний комплекс для кабінету фізики</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>А) Цифровий вимірювальний комп'ютерний комплекс для вчителя:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>цифровий вимірювальний комп'ютерний комплекс для кабінету фізики підключається до комп'ютера USB-порту комп'ютера, має можливість бездротового та/або дротового способу під'єднання або має аутономний режим з безпосереднім виводом результатів на вбудований екран з можливістю подальшого їх перенесення для обробки до основного комп'ютера. Комплекс супроводжується керівництвом з експлуатації, методичним посібником та програмним забезпеченням.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>А.1. Методичний посібник:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>методичний посібник з проведення інтерактивних демонстраційних експериментів та лабораторних робіт із можливістю роботи в режимі з або без підключення до мережі Інтернет, інтерактивним змістом, функціоналом для редагування контенту або створення нотаток та закладок безпосередньо у посібнику, який працює в операційних системах ОС Windows, та/або Android, та/або iOS.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Методичний посібник з фізики повинен містити не менше 20 демонстраційних експериментів та лабораторних робіт з використанням цифрового вимірювального комп'ютерного комплексу для кабінету фізики, мати інструменти для створення власних експериментів.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Характеристики програмного забезпечення цифрового вимірювального комп'ютерного комплексу:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>можливість збору даних одночасно з декількох датчиків;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>кілька режимів відображення даних: графіки, таблиці, діаграми і цифровий вигляд;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>можливість математичного опрацювання зібраних даних у вікні графіків та таблиці із застосуванням основних функцій аналізу графічних даних;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>можливість отримання статистичних характеристик отриманих даних;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>експорт даних в Excel та інші програми;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>наявність версій програмного забезпечення ОС, сумісних з комп'ютером вчителя/учнів;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>інтерфейс програмного забезпечення повинен бути багатомовним (український та англомовний інтерфейси обов'язкові)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Лабораторні роботи:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Визначення періоду та частоти обертання тіла.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Дослідження коливань нитяного маятника.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Дослідження пружних властивостей тіл.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Визначення коефіцієнта тертя ковзання.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Вивчення умов рівноваги важеля.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Визначення ККД простого механізму.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Вивчення теплового балансу за умов зміцнення води різної температури.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Визначення питомої теплоємності речовини.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Вимірювання опору провідника.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Дослідження електричного кола з послідовним з'єднанням провідників.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Дослідження електричного кола з паралельним з'єднанням провідників.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Спостереження явища електромагнітної індукції.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Визначення прискорення тіла під час рівноприскореного руху.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Вимірювання прискорення вільного падіння.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Вимірювання жорсткості пружного тіла.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Виготовлення маятника і визначення періоду його коливань.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Дослідження одного з ізопроцесів.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Вимірювання ЕРС і внутрішнього опору</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>A.2. Аналогово-цифровий перетворювач – 1</td>
<td>Аналогово-цифровий перетворювач повинен:</td>
<td>джерела струму.</td>
<td>Визначення температурного коефіцієнта опору металу й дослідження залежності опору напівпровідника від температури. Дослідження напівпровідникового дюда. Дослідження магнітногого поля Землі. Вимірювання індуктивності котушки. Демонстрації: Приклади застосування фізичних явищ у техніці. Засоби вимірювання. Мірі та вимірювальні прилади. Різні види руху. Відносність руху, його тракторії й швидкості. Деформація тіл. Додавання сил, спрямованих уздовж однієї прямої. Прояви та вимірювання сил тертя ковзання, кочення, спокою. Способи зменшення й збільшення сили тертя. Залежність тиску від значення сили та площі. Передавання тиску рідинами й газами. Тиск рідини на дно і стінки посудини. Зміна тиску в рідині з глибиною. Вимірювання атмосферного тиску. Дія архімедової сили в рідинах і газах. Рівність архімедової сили вази витісненої рідини в об’ємі зануреної частини тіла. Перетворення механічної енергії. Важіль. Рухомий і нерухомий блоки. Похила площа. Використання простих механізмів. Дифузія газів, рідин. Зміна внутрішньої енергії тіла внаслідок виконання роботи. Принцип дії теплового двигуна.</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>Точність: не гірше ± 5 %.</td>
<td>Калібрування: не вимагає калібрування</td>
<td>Залежність сили строму від напруги на ділянці кола й від опору цієї ділянки.</td>
</tr>
<tr>
<td></td>
<td>A.9. Датчик освітленості - 1:</td>
<td>Діапазони: не вузьке 0 - 600 лк; 0 - 6000 лк; 0 -150 клк.</td>
<td>Послідовне й паралельне з’єднання провідників.</td>
</tr>
<tr>
<td></td>
<td>Точність: не гірше ± 4 %.</td>
<td>Спектральний діапазон: видиме світло</td>
<td>Магнітне поле Землі.</td>
</tr>
<tr>
<td></td>
<td>A.10. Датчик магнітного поля (звоїнічний) – 1:</td>
<td>Чутливість: не менше ± 0,5 мТл, не менше ±10 мТл.</td>
<td>Дія магнітного поля на струм.</td>
</tr>
<tr>
<td></td>
<td>Точність: не гірше ± 8 %.</td>
<td>Калібрування: поставляється повністю відкільбрований</td>
<td>Генератори індукційного струму.</td>
</tr>
<tr>
<td></td>
<td>Калібрування датчика також можливе в рамках програмного забезпечення</td>
<td>Ⱥ.11. Датчик руху (відстані, зовнішній) – 1:</td>
<td>Відбивання світла.</td>
</tr>
<tr>
<td></td>
<td>Діапазон: не вузький 0,2 м - 8 м.</td>
<td>Точність: не гірше 5 %.</td>
<td>Поширення механічних коливань у пружному середовищі.</td>
</tr>
<tr>
<td></td>
<td>Калібрування: не вимагає калібрування</td>
<td>Ⱥ.12. Фотоворот – 2:</td>
<td>Залежність гучності звуку від амплітуди коливань.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>датчик вимірює час, необхідний об’єкту для проходження під аркою датчика</td>
<td>Залежність висоти тону від частоти коливань.</td>
</tr>
<tr>
<td></td>
<td>A.13. Датчик сили (звоїнічний) – 2:</td>
<td>Діапазони: не менше -10 Н до +10 Н; не менше -50 Н до +50 Н.</td>
<td>Вимірювання сили шляхом вимірювання тонусу або попелюшка.</td>
</tr>
<tr>
<td></td>
<td>діапазон: не менше -10 Н до +10 Н; не менше -50 Н до +50 Н.</td>
<td>Точність: не гірше ± 5%.</td>
<td>Віддзеркалення коливань електромагнітних хвиль</td>
</tr>
<tr>
<td></td>
<td>Калібрування: поставляється повністю відкільбрований</td>
<td>Калібрування датчика також можливе в рамках програмного забезпечення</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Калібрування датчика також можливе в рамках програмного забезпечення</td>
<td>Ⱥ.14. Датчик рівня звукового тиску (звоїнічний) - 1:</td>
<td>Ⱥ.16. Датчик вологості – 1:</td>
</tr>
<tr>
<td></td>
<td>діапазон вимірювань: не вузьке 45 дБ - 110 дБ.</td>
<td>діапазон: не менше ± 5 г .</td>
<td>вимірює відносну вологість від 0 % - 100 %.</td>
</tr>
<tr>
<td></td>
<td>Точність вимірювань датчика повинна бути не менше 5 дБ.</td>
<td>Точність: не гірше ± 0,02 г</td>
<td>Точність вимірювань датчика не гірше 5 %</td>
</tr>
<tr>
<td></td>
<td>Діапазон реєстрованих датчиком частот повинен бути не менше 100 Гц - 8000 Гц</td>
<td>Ⱥ.15. Датчик прискорення (звоїнічний) – 1:</td>
<td>Ⱥ.18. Датчик температури навколишнього середовища – 1:</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>1</td>
<td>Точність: не гірше ± 2%.</td>
<td>Калібрування: не вимагає калібрування.</td>
<td>Набір кабелів у кількості, достатній для підключення аналогово-цифрового перетворювача та датчиків.</td>
</tr>
<tr>
<td>2</td>
<td>Б) Цифровий вимірювальний комп’ютерний комплекс для учнів:</td>
<td>Програмне забезпечення та характеристики цифрового вимірювального комп’ютерного комплексу для кабінету фізики для навчання аналого-цифровому забезпеченню та характеристиках цифрового вимірювального комплексу для кабінету фізики для вчителя.</td>
<td>Перелік датчиків у складі цифрового комп’ютерного вимірювального комплексу для навчання визначається вчителем відповідно до вимог навчальної програми, але має бути достатнім для виконання досліджень та лабораторних робіт, зазначених в цьому Типовому переліку</td>
</tr>
<tr>
<td>II. Приклади загального призначення</td>
<td>1. Приклади демонстраційні електричні</td>
<td>1.1. Приклади демонстраційні електричні</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Терези електричні високій точності</td>
<td>Терези електричні високій точності</td>
<td>Для нагінання та зберігання у розгірнутому стані речовин під час проведення різноманітних демонстраційних дослідів</td>
</tr>
<tr>
<td></td>
<td>Максимальне навантаження терезів – не менше 0,5 кг, чутливість – 0,01 г, клас точності - середній. Живлення - від мережі або акумулятора</td>
<td>Максимальне навантаження терезів – не менше 0,5 кг, чутливість – 0,01 г, клас точності - середній. Живлення - від мережі або акумулятора</td>
<td>Для забезпечення вимірювання напруги та постійного і змінного струму, опору</td>
</tr>
<tr>
<td></td>
<td>Плітка електрична</td>
<td>Плітка електрична</td>
<td>Для забезпечення вимірювання напруги та постійного і змінного струму, опору</td>
</tr>
<tr>
<td></td>
<td>Плітка являє собою електронагрівач у вигляді закритого керамічного диска зі спіраллю, вмонтуваною в корпус.</td>
<td>Плітка являє собою електронагрівач у вигляді закритого керамічного диска зі спіраллю, вмонтуваною в корпус.</td>
<td>Для забезпечення вимірювання напруги та постійного і змінного струму, опору</td>
</tr>
<tr>
<td></td>
<td>Основні технічні характеристики:</td>
<td>Основні технічні характеристики:</td>
<td>Для проводення демонстраційних дослідів як джерело змінного електричного струму звукової частоти</td>
</tr>
<tr>
<td></td>
<td>напруга живлення 220 В, 50 Гц, споживана потужність не менше ніж 0,5 кВт</td>
<td>напруга живлення 220 В, 50 Гц, споживана потужність не менше ніж 0,5 кВт</td>
<td>Для проводення демонстраційних дослідів як джерело змінного електричного струму звукової частоти</td>
</tr>
<tr>
<td></td>
<td>Блок живлення лабораторний</td>
<td>Блок живлення лабораторний</td>
<td>Для забезпечення вимірювання напруги та постійного і змінного струму, опору</td>
</tr>
<tr>
<td></td>
<td>Основні технічні характеристики:</td>
<td>Основні технічні характеристики:</td>
<td>Для забезпечення вимірювання напруги та постійного і змінного струму, опору</td>
</tr>
<tr>
<td></td>
<td>постійна стабілізовано напруга, регулювання напруги та сили струму, захист за струмом, наявність контрольних приладів напруги та сили струму.</td>
<td>постійна стабілізовано напруга, регулювання напруги та сили струму, захист за струмом, наявність контрольних приладів напруги та сили струму.</td>
<td>Для забезпечення вимірювання напруги та постійного і змінного струму, опору</td>
</tr>
<tr>
<td></td>
<td>Максимальні параметри: вихідна напруга не менше 12 В, струм не менше 2 A</td>
<td>Максимальні параметри: вихідна напруга не менше 12 В, струм не менше 2 A</td>
<td>Для забезпечення вимірювання напруги та постійного і змінного струму, опору</td>
</tr>
<tr>
<td></td>
<td>Генератор звуковий функціональний</td>
<td>Генератор звуковий функціональний</td>
<td>Для забезпечення вимірювання напруги та постійного і змінного струму, опору</td>
</tr>
<tr>
<td></td>
<td>Генерує електричні сигнали синусоїдальної, прямокутної та трикутної форми</td>
<td>Генерує електричні сигнали синусоїдальної, прямокутної та трикутної форми</td>
<td>Для забезпечення вимірювання напруги та постійного і змінного струму, опору</td>
</tr>
<tr>
<td></td>
<td>Мікрофон для демонстраційні</td>
<td>Мікрофон для демонстраційні</td>
<td>Для забезпечення вимірювання напруги та постійного і змінного струму, опору</td>
</tr>
<tr>
<td></td>
<td>Блок живлення демонстраційний (випрямлена та змінна напруга)</td>
<td>Блок живлення демонстраційний (випрямлена та змінна напруга)</td>
<td>Для забезпечення вимірювання напруги та постійного і змінного струму, опору</td>
</tr>
<tr>
<td></td>
<td>з захистом за струмом, має великі контрольні прилади напруги та сили струму.</td>
<td>з захистом за струмом, має великі контрольні прилади напруги та сили струму.</td>
<td>Для забезпечення вимірювання напруги та постійного і змінного струму, опору</td>
</tr>
<tr>
<td></td>
<td>Максимальні параметри: вихідна напруга не менше 12 В, струм - не менше 2 A</td>
<td>Максимальні параметри: вихідна напруга не менше 12 В, струм - не менше 2 A</td>
<td>Для забезпечення вимірювання напруги та постійного і змінного струму, опору</td>
</tr>
<tr>
<td></td>
<td>Генератор (джерело) високої напруги - електронний перетворювач змінної мережевої напруги у високу постійну напругу</td>
<td>Генератор (джерело) високої напруги - електронний перетворювач змінної мережевої напруги у високу постійну напругу</td>
<td>Для забезпечення вимірювання напруги та постійного і змінного струму, опору</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>1</td>
<td>Демонстраційний мультиметр</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Стрітчне, рідкокристалічне або світлодіодне табло з цифрами, розмір яких дозволяє розрізняти показання з відстані до 5 м</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Демонстраційний гальванометр магнітоелектричної системи з табло з цифрами, розмір яких дозволяє розрізняти показання з відстані до 5 м</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Зарядний пристрій для акумуляторів типу АА для забезпечення автоматичного зарядження не менш як 4 акумуляторів типу АА</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Акумулятори типу АА з смісістю не менше 2000 мА/год та е.р.с. в зарядженному стані не менше 1,3 В</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Цифровий вимірювальний прилад (мультиметр)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Для вимірювання постійної і змінної напруги, постійного і змінного струму, опору, ємкості, частоти, температури, перевірки діодів</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Водонагрівач</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 об’ємом води, що нагрівається, 1-2 л, потужність 1-2 кВт</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Терези електронні, побутові</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Максимальне значення не менше 1 кг, точність не гірше 1 г, розміри платформи зважування не менше 120 мм</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Прилади механічні</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.1. Прилади механічні демонстраційні</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Метр демонстраційний</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Виготовлений з міцного пластиків або дерева з міліметровою, сантиметровою, дециметровою шкалою</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Терези механічні</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Максимальне значення не менше 0,1 кг.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Важки до терезів, 0,001 кг - 10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Штатив фізичний універсальний</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Виготовлений з міцних, зносостійких матеріалів, що мають антикорозійне покриття або стійких до зовнішніх впливів. Штатив має бути у модульному виконанні з ящиком для зберігання та транспортування. До складу штативу входять: основа - 1; стрижень - 1; затискачі - 1; лапка - 1; кільце - 1. Всі деталі приладу мають бути розміщені в ложементах</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Вантаж набірний</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Диски 0,01-0,05 кг, у тому числі 1 – на стрижні; від 0,1кг</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Столик підіймальний</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Розмір платформи 150150 мм або 200200 мм, для забезпечення рівномірного підняття</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>обладнання на висоту не менше 200 мм</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Вакуумна тарілка</td>
<td>Оснащена електричним дзвінком або іншим джерелом звуку, з граничним значенням вакууметричного тисків під ковпаком не менше ніж 0,1 МПа</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Гучномовець демонстраційний</td>
<td>Ширококамтовий гучномовець або акустична система із вбудованим підсилювачем та діапазоном відтворюваних частот не менше 20-10000 Гц</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Насос вакуумний електричний або механічний</td>
<td>Забезпечує залишковий тиск не більше 150 Па. У комплекті може бути додаткове устаткування одного стандарту: перехідник фланць-штуцер для приєднання вакуумного шланга Θ 6-8 мм; швидкозмінний затискач; вакуумний гвинтовий кран; ущільнювач для з’єднання фланців; вакуумний герметик; вакуумний шланг Θ 6-8 мм, довжина – 1,5-2 м; шланг вихлопний, довжина – 1,5-2 м; вакуумний штуцер-трійник; фільтр вихлопу</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3. Набір хімічного посуду</td>
<td>3.1. Набір хімічного посуду або набір шкільний лабораторний для кабінету фізики (НШЛФ):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>склянка для зберігання речовин 20 мл - 6;</td>
<td>колба конічна 50 мл - 1;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>кришка до склянки - 8;</td>
<td>колба плоскодонна 50 мл - 1;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>стакан хімічний ПІ 50 мл - 1;</td>
<td>колба круглодонна 50 мл - 1;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>стаканчик скляний - 1;</td>
<td>склянка для зберігання речовин 50 мл - 2;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>пробірка ПХ14 - 15;</td>
<td>пробірка ПХ21 - 2;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>пробірка ПХ21 - 2;</td>
<td>штатив для пробірок на 10 гнізд - 1;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>чашка Петрі ПІ - 1;</td>
<td>чаша випаровальна - 1;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>чаша Петрі ПІ - 1;</td>
<td>тигель - 1;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>кришка до тигра - 1;</td>
<td>кришка до тигра - 1;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ложка для спалювання речовин - 1;</td>
<td>ложка для спалювання речовин - 1;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>тримач для пробірок - 1;</td>
<td>тримач для пробірок - 1;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>затискач пружинний - 2;</td>
<td>затискач пружинний - 2;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>затискач гвинтовий - 2;</td>
<td>паличка скляна - 2;</td>
<td>паліетка-дозатор 6 мл ПП - 1;</td>
<td>1</td>
</tr>
<tr>
<td>трубка з’єднувальна 1 м - 1;</td>
<td>лійка конічна 36 х 50 - 1;</td>
<td>піпетка-дозатор 3 мл ПП - 1;</td>
<td>1</td>
</tr>
<tr>
<td>папір фільтрувальний - 5;</td>
<td>сухе паливо (таблетки) - 2;</td>
<td>сушила латунна розпилювальна - 1;</td>
<td>1</td>
</tr>
<tr>
<td>піпетка-дозатор 6 мл ПП - 1;</td>
<td>яйце для миття посуду - 3;</td>
<td>ступка з товкачником - 1;</td>
<td>1</td>
</tr>
<tr>
<td>суспільні латексні - 5;</td>
<td>рукивички латексні - 5;</td>
<td>термометр рідкій (-10°C...+110°C) або електронні щупи - 1;</td>
<td>1</td>
</tr>
<tr>
<td>сітка латунна розпилювальна - 1;</td>
<td>йогур для миття посуду - 3;</td>
<td>приток - 1;</td>
<td>1</td>
</tr>
<tr>
<td>ножиці для зберігання набору - 1;</td>
<td>лоток для зберігання набору - 1;</td>
<td>пакувальна коробка – 1</td>
<td></td>
</tr>
</tbody>
</table>

3.2. Штатив лабораторний

Виготовлений з міцних, зносостійких матеріалів, що мають антикорозійне покриття або алюманні до зовнішніх впливів. Штатив має бути у модульному виконанні з ящиком для зберігання та транспортування. До складу входять: основа - 1; стрижень - 1; затискач - 1; лапка - 1; кільце - 1

Для закріплення різних приладів і пристосувань під час проведення лабораторних робіт 1

4. Набір інструменту

4.1. Набір ручного слюсарного та електромуонтажного інструменту

Склад набору:
молоток - 1; ножиці - 1; кусачки - 1; напилки - 2; викрутки – не менше 2; гайкові ключі – не менше 5; ножіки (по металу, по дереву) - 2; плоскогубці - 1; сегментний ніж - 1

Для виконання простих монтажних дій з навчальним обладнанням, електромунтажу та обробки деревини 1
<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>рулетка 5 м – 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Осциллограф</td>
<td>5.1. Осциллограф демонстраційний двоканальний</td>
<td>Кількість вхідних сигналів – 2</td>
<td>Для спостереження за формою і частотою періодичних сигналів під час проведення демонстраційних досліджень з різних розділів фізики</td>
</tr>
<tr>
<td>III. Механіка</td>
<td>1. Демонстраційне обладнання</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.1. Набори</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>А) Набір для демонстрації «Механіка: кінематика, динаміка»:</td>
<td></td>
<td>Відносність руху, його траекторії й швидкості. Явища інерції та взаємодії тіл. Перетворення механічної енергії. Рівномірний прямолінійний рух. Рівноприскорений прямолінійний рух. Другий закон Ньютона. Закон збереження імпульсу. Пружне та непружне зіткнення тіл</td>
</tr>
<tr>
<td></td>
<td>направляюча лава з перевідним блоком (алюміній або міцний пластик), регулюється за нахилом, довжина не менше 1 м - 1; візки на підвісці, що забезпечує низьке тертя (магнітна, повітряна, підшипникова) – не менше 2; змінні циліндричні вантажі - не менше 3; набір для кріплення фотоворіт для визначення швидкості візка – не менше 2; комплект додаткового пристосування для демонстрації виконання закону збереження імпульсу – 1; ящик для транспортування та зберігання з ложементами - 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Б) Набір зі статики з магнітними тримачами:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>пластина неправильної форми – 1; тримачі магнітні - 2; шкала з показником – 1; похила площа – 1; фрикційний блок – 1; шестерні зубчасті передаточні - 2; магнітні підставки-тримачі - 2; демонстраційні динамометри до 5Н - 2; пружини -2; блоки - 2; важки - 2; шнур - не менше 5 м; показники магнітні - 2; поліспаст – 2; демонстраційні гнучкі мітки (стрілки, трикутники) на магнітній основі – 4; важіль з тарілочками для важків – 1; ящик для транспортування та зберігання з ложементами</td>
<td></td>
<td>Додавання сил, спрямованих уздовж однієї прямої. Умови рівноваги тіл. Важіль. Рухомі і нерухомі блоки. Використання простих механізмів. Сила сухого тертя. Розклад сил на похилій площині. Визначення положення центра мас плоскої фігури</td>
</tr>
<tr>
<td></td>
<td>В) Набір кульок: кульки від 0,005 кг - 0,1 кг – 3. Кожна кулька має отвір або вушко для закріплення нитки</td>
<td></td>
<td>Різні види руху. Вільні коливання тіл. Додавання гармонійних коливань. Затухаючі коливання.</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Вимушени коливання. Явища резонансу у механічних системах. Децентрове прискорення. Децентрова сила. Період та частота, лінійна та кутова швидкості обертового руху. Вплив частоти обертання на децентрове прискорення</td>
</tr>
<tr>
<td>1) Набір для демонстрації «Механіка: кінематика та динаміка обертального руху»:</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>електрична обертована машина з регулятором частоти – 1;</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>обертована платформа з вертикальним кріпленням – 1;</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>легкий візок – 1;</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>динамометр (1-3Н) – 1;</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>оптогенератор лічильником – 1;</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>пасок – 1;</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>кріплення до столу – 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Приклади та прилади</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1. Призма з нахилом</td>
<td></td>
<td></td>
<td>Умови рівноваги тіл</td>
</tr>
<tr>
<td></td>
<td>Для демонстрації умови рівноваги (стійкості) тіла, яке опирається на горизонтальну площину</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.2. Комплект для вивчення руху тіл по колу</td>
<td></td>
<td></td>
<td>Для демонстрації рівномірного та прискореного руху тіл по колу, визначення кутової швидкості, прискорення та децентрової сили</td>
</tr>
<tr>
<td></td>
<td>Комплект містить:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>маятник Фуко - 1;</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>регулятор Уагта - 1;</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>відцентрові обручі - 1;</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>диск, що обертається, - 1;</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>сталеві кули - 2;</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>акселерометр – 1;</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>можливе додаткове обладнання;</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ящик для транспортування та зберігання з ложементами</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.3. Трибометр демонстраційний</td>
<td></td>
<td></td>
<td>Прояви та вимірювання сил тертя ковзання, кочення, спокою. Способы зменшення й збільшення сил тертя. Розклад сил на похилій площині</td>
</tr>
<tr>
<td></td>
<td>Для демонстрації законів тертя і рівноваги тіл на похилій площині</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.4. Пістолет аероспеційний</td>
<td></td>
<td></td>
<td>Деформація тіла. Перетворення механічної енергії. Рух тіла під дією сили земного тяжіння. Рух тіла, кинутого горизонтально. Рух тіла, кинутого під кутом до горизонту</td>
</tr>
<tr>
<td></td>
<td>Для проведення демонстраційних дослідів і лабораторних робіт під час вивчення механіки</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>2.5. Демонстраційний прилад з інерції</td>
<td>Підставка з лункою - 1; кулька - 1; пластинка – 1</td>
<td>Явища інерції та взаємодії тіл</td>
<td>1</td>
</tr>
<tr>
<td>2.6. Трубка Ньютонна</td>
<td>Призначена для демонстрації падіння різних тіл у вакуумі. Трубка – довга товстостінна прозора пластикова трубка, один кінець виключно запаяний, а другий закріплено в оправі з краном та штucerом. Всередині трубки знаходяться різноманітні тіла</td>
<td>Різні види руху. Вільне падіння тіл</td>
<td>1</td>
</tr>
<tr>
<td>2.7. Посудина для зважування повітря</td>
<td>Для визначення густини повітря чи іншого газу: скляна або пластикова сміксть об’ємом близько 1000 мл зі штucerом - 1; шланг - 1; кран - 1; тканинний кожух для застереження від осколків у разі можливої руйнації посудини в процесі відкачування повітря - 1</td>
<td>Вимірювання атмосферного тиску. Введення поняття густини</td>
<td>1</td>
</tr>
<tr>
<td>2.8. Барометр-анероід</td>
<td>Для вимірювання атмосферного тиску під час виконання лабораторних і демонстраційних дослідів</td>
<td>Вимірювання атмосферного тиску</td>
<td>1</td>
</tr>
<tr>
<td>2.9. Манометр рідинний демонстраційний</td>
<td>U-подібна скляна або пластикова трубка висотою не менше ніж 450 мм - 1; оцифрована шкала</td>
<td>Тиск рідини на дно і стінки посудини. Зміна тиску в рідині з глибиною</td>
<td>2</td>
</tr>
<tr>
<td>2.10. Прилад для демонстрації тиску в рідині</td>
<td>Датчик тиску - 1: стрижень, що надає йому можливість приймати будь-яку орієнтацію. Порожнинна датчика тиску з’єднана через патрубок з еластичною трубкою</td>
<td>Тиск рідини на дно і стінки посудини. Зміна тиску в рідині з глибиною</td>
<td>2</td>
</tr>
<tr>
<td>2.11. Сполучені посудини</td>
<td>Набір прозорих трубок (посудин) різної форми; загальна підставка (колектор)</td>
<td>Сполучені посудини</td>
<td>1</td>
</tr>
<tr>
<td>2.12. Кулі Паскаля</td>
<td>Для проведення демонстраційних дослідів з гідро- і аеростатики. Складається з порожнистої металевої або пластмасової кулі з отворами, циліндра і поршня зі штоком</td>
<td>Передавання тиску рідинами й газами</td>
<td>1</td>
</tr>
<tr>
<td>2.13. Прес гідравлічний</td>
<td>Для демонстрації будови і дії гідравлічного преса. Прес – змонтований на чавунній станні робочий прозорий циліндр з поршнем і насос із запобіжним клапаном та манометром у прозорому корпусі. Привід насosa здійснюється за допомогою ручатки у вигляді важеля. Зниту робочого циліндра встановлено спусковий клапан для масла, зверну – для спускання повітря</td>
<td>Передавання тиску рідинами й газами. Будова і дія манометра</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2.14. Цилиндр вимірювальний з пристосуваннями (відверє Архімеда)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>1</td>
<td>Склад набору: динамометр - 1; відверце - 1; стакан відливний - 1; циліндр вимірювальний - 1; важки - 1; пакувальна коробка – 1</td>
<td>2</td>
<td>Дія архімедової сили в рідинах і газах. Рівність архімедової сили вази витісненої рідини в об’ємі зануреної частини тіла</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>2.15. Комплект для демонстрації стоячих хвиль</td>
<td>Утворення стоячої хвилі</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>2.16. Хвильова ванна</td>
<td>Поширення механічних коливань у пружному середовищі. Явища відбивання, заломлення та накладання механічних хвиль. Інтерференція та дифракція механічних хвиль. Довжина хвилі, швидкість поширення хвиль</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>2.17. Камертони на резонуючих ящиках:</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>камертон з частотою 440 Гц – 2; резонуючий ящик з однією відкритою торцевою стінкою – 2;</td>
<td></td>
<td>Залежність гучності звуку від амплітуди коливань. Залежність висоти тону від частоти коливань. Виникнення звукових хвиль. Явище резонансу звукових хвиль</td>
</tr>
<tr>
<td></td>
<td>молоточок для збудження камертона – 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.18. Довга металева пружина - слінкі</td>
<td>Поширення механічних коливань у пружному середовищі</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Металева пружина діаметром близько 100 мм, виготовлена із металевої або пластикової стрічки. У недеформованому вигляді пружина збігається до розміру, що визначений товщиною усіх складених разом витків. Загальна довжина непластично розтягнуті пружини має бути не менше 2 м</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3. Обладнання для лабораторних робіт

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1. Набір лабораторний «Механіка» (з ящиком для зберігання):</td>
<td></td>
<td></td>
<td>Ознайомлення з вимірювальними приладами. Визначення ціні поділки шкали. Вимірювання об’єму твердих тіл, рідин і сипких матеріалів. Вимірювання розмірів малих тіл. Вимірювання маси тіл методом зважування. Визначення густини речовини. Визначення періоду обертання тіла. Дослідження коливань нитяного маятника. Дослідження пружних властивостей тіл. Визначення коефіцієнта тертя ковзання. З’ясування умов плавання тіла. Вивчення умов рівноваги важеля. Визначення ККД простого механізму. Визначення прискорення тіла під час рівнописокореного руху. Дослідження руху тіла по колу. Вимірювання жорсткості пружного тіла. Дослідження рівноваги тіл під дією кількох сил. Виготовлення маятника і визначення періоду його коливань.</td>
</tr>
<tr>
<td>3.2. Набір пружин з різною жорсткістю</td>
<td>Пружені властивості тіла</td>
<td>2 - 15*</td>
<td></td>
</tr>
<tr>
<td>Набір пружин (від 3 шт.) різної жорсткості в діапазоні від 2,5 до 25 Н/м. Кожна пружина оснащена покажчиком червоного кольору, що має можливість переміщуватись по гачку для установки та фіксації нульового положення.</td>
<td>2 - 15*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3. Набір тіл рівної маси</td>
<td>Визначення густини речовини (твердих тіл і рідин)</td>
<td>2 - 15*</td>
<td></td>
</tr>
<tr>
<td>Тіла рівної маси з різних матеріалів довжиною не менше ніж 20 мм (або еквівалент)</td>
<td>2 - 15*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.4. Набір тіл рівного об’єму</td>
<td>Визначення густини речовини (твердих тіл і рідин)</td>
<td>2 - 15*</td>
<td></td>
</tr>
<tr>
<td>Тіла рівного об’єму з різних матеріалів довжиною не менше ніж 20 мм (або еквівалент)</td>
<td>2 - 15*</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

IV. Молекулярна фізика та термодинаміка

<table>
<thead>
<tr>
<th>1. Демонстраційне обладнання</th>
<th>1.1. Моделі</th>
<th>Моделі молекул.</th>
<th>Моделі молекул.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Модель будови молекули графіту.</td>
<td>Модель будови молекули графіту.</td>
<td>Моделі молекул.</td>
<td>1</td>
</tr>
<tr>
<td>Модель будови молекули повареної солі.</td>
<td>Модель будови молекули повареної солі.</td>
<td>Моделі молекул.</td>
<td>1</td>
</tr>
<tr>
<td>Модель будови молекули алмазу.</td>
<td>Модель будови молекули алмазу.</td>
<td>Моделі теплових двигунів.</td>
<td>1</td>
</tr>
<tr>
<td>Модель двигуна внутрішнього згорання</td>
<td>Модель двигуна внутрішнього згорання</td>
<td>Демонстрація адіабатного стиснення та виходу з адіабатного стиснення</td>
<td>1</td>
</tr>
</tbody>
</table>
1.2. Приклади та пристосування

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>А) Куля з кільцем для демонстрації теплового розширення твердого тіла:</td>
<td></td>
<td>розширення повітря.</td>
<td>Принцип дії теплового двигуна. Моделі теплових двигунів</td>
</tr>
<tr>
<td>металічна куля діаметром до 30 мм, що підвішена на ланцюжку, - 1; металічне кільце на держаку - 1; біметалева пластини зі стрілкою - 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Б) Набір капілярів:</td>
<td></td>
<td>Розширення тіл під час нагрівання. Демонстрація поверхневого натягу рідини. Демонстрація явища змочування та капілярності.</td>
<td>Демонстрація підтвердження основних положень молекулярно-кінетичної теорії. Демонстрація лінійного розширення твердих тіл, визначення коефіцієнта лінійного розширення</td>
</tr>
<tr>
<td>Для демонстрації капілярних явив у трубках різного діаметра: загальна підставка - 1; трубки капілярні з різним діаметром капілярних каналів - 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>В) Циліндрі свинцю зі струтом:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Для демонстрації прями молекулярної взаємодії атомів свинцю: циліндр, що складаються зі сталевої та свинцевої частини, – 2 (стальні частини циліндрів мають гачки для підвішування); ніж (струг) для зачищення торців свинцевої частини - 1; трубка – 1; трубуцина для стискання циліндрів – 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Г) Приклад для демонстрації лінійного розширення тіл:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Набір стержнів, однакових за розмірами: стержень, виготовлений з міді. - 1; стержень, виготовлений з латуні, – 1; стержень, виготовлений з алюмінію, – 1; мікрометричний індикатор – 1; термостат електричний з водяним насосом – 1; сніжечка для води до термостата – 1; електронний термометр – 1; шланг (від 2 м) – 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Е) Приклад для демонстрації поверхневого натягу: ліфт-столик (розмір платформи не менше 15 х 15 см, висота підйому не менше 15 см) – 1; штатив – 1; мілідинамометр – 1; кільця з вушком, діаметр 20-40 мм – 1; плоска скляна циліндрична посудина – 1.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| | 1.3. Прилади вимірювальних
A) Гігрометр психрометричний
 для вимірювання відносної вологості повітря у приміщенні. Діапазон вимірювання т сухого
 термометра не менше 0…+35 °C:
 міцна основа - 1;
 термометри - 2;
 температурна шкала - 1;
 психрометрична таблиця - 1;
 скляній живильник - 1
 Методи вимірювання вологості повітря
 Вимірювання параметрів навколишнього середовища
 Виконання теплового балансу за умов зміцтування води різної температури.
 Визначення питомої теплосмістності речовин,
 Дослідження одного з ізопроцесів.
 Вимірювання відносної вологості повітря |
| | | | | 1 |
| | Б) Метеостанція
 з виносним бездротовим датчиком, що вимірює температуру в кімнаті та на виносному датчику,
 атмосферний тиск, відносну вологість в кімнаті. Має можливість синхронізації часу за
 радіосигналом еталонного годинника
 Демонстрація способів зміни внутрішньої енергії тіл
 1 |
| | В) Теплопріймач
 для демонстрації теплопередачі шляхом випромінювання і порівняння поглинання енергії
 світлою і темною поверхнями
 1 |
| | Г) Термометр демонстраційний електронний з великими цифрами
 1 |
| 2. Набори | 2.1. Набір лабораторний «Молекулярна фізика та термодинаміка» (з ящиком для
 зберігання)
 Набір складається зі спеціального обладнання, хімічного посуду та вимірювальних приладів:
 калориметр – 1;
 мірний циліндр 100 мл - 1;
 колба конічна - 1;
 тримачі - 2;
 трубки - 2;
 термометр – 1;
 тіла для калориметрії – 3;
 ваги електронні – 1;
 чашка Петрі – 1;
 кільце для штативу - 3;
 ящик для транспортування та зберігання з ложементами – 1.
 Можливе додаткове обладнання
 Вивчення теплового балансу за умов зміцтування води різної температури.
 Визначення питомої теплосмістності речовин,
 Дослідження одного з ізопроцесів.
 Вимірювання відносної вологості повітря
 2 - 15* |
| | 2.2. Набір демонстраційний «Атмосферний тиск»
 Склад набору:
 сигналізатор – 1;
 звукопоглинаюча панель – 1;
 магнієві півкулі – 1;
 вакуумна камера не менше 1000 мл, з манометром – 1;
 Для виконання лабораторних робіт під час
 вивчення молекулярної фізики та термодинаміки
 1 |
<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3. Набір для дослідження поверхневого натягу рідини:</td>
<td></td>
<td>Визначення поверхневого натягу рідини</td>
<td></td>
</tr>
<tr>
<td>тверда циліндрична вакуумна камера, з кільцем-уцілювачем – 1; кришка з фіксованими клапанами вентиляції, барометром, об'єм не менше 1000 мл – 1; ящик для транспортування та зберігання з ложементами – 1. Можливо додаткове обладнання</td>
<td>динамометр - 1; рамки різних розмірів і форм, виготовлені з дроту з петлями – 5; площинні тіла – 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V. Електрика та магнетизм</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Демонстраційне обладнання</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1. Високовольтні механічні джерела (демонстраційні)</td>
<td></td>
<td>Електризація різних тіл. Взаємодія наелектризованих тіл. Два роди електричних зарядів. Демонстрація роботи електростатичних генераторів</td>
<td>1</td>
</tr>
<tr>
<td>Для проведення демонстраційних дослідів з електростатики</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>А) Електрофор машина - генератор Вімшурста</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Всі частини електрофороної машини змонтовані на міцних електроізоляційних стійках, які разом з лейденськими банками укріплені на загальній міцній електроізоляційній підставці; або</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Б) Електростатичний генератор Ван де Граафа навчальний.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Є джерелом високої напруги і призначення для проведення демонстраційних дослідів з електростатики і для демонстрації існуючого газового розряду в повітрі</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2. Електроскопи</td>
<td></td>
<td>Електризація різних тіл. Взаємодія наелектризованих тіл. Два роди електричних зарядів. Будова й принцип дії електроскопа</td>
<td>2</td>
</tr>
<tr>
<td>Для проведення демонстраційних дослідів під час вивчення електростатики і показу виникнення зміної й постійної напруги для виявлення електричного заряду; визначення знака заряду і його відносного значення. Максимальна напруата до 8 кВ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3. Електрометри з приєстуванням</td>
<td></td>
<td>Електризація різних тіл. Взаємодія наелектризованих тіл. Два роди електричних зарядів. Подільність електричного заряду</td>
<td>1</td>
</tr>
<tr>
<td>Для проведення електромагнітних дослідів з електростатики. Електрометр (циліндричний корпус на підставці із змонтованими в ній стрілками- показниками і шкалою без оцінювання) – 2; електроскоп – 1; кульові металічні кондуктори – 2; конденсаторний диск – 2; суртан електростатичний – 2; сітка з електростатики – 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.4. Сулюти електростатичні</td>
<td></td>
<td>Взаємодія наелектризованих тіл. Два роди електричних зарядів. Силові лінії електричного поля</td>
<td>2</td>
</tr>
<tr>
<td>Для дослідів під час вивчення електростатики. Склад: металевий або пластиковий стрижень і легкі шовкові нитки яскравих кольорів</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.5. Маятник електростатичний</td>
<td></td>
<td>Електризація різних тіл. Взаємодія наелектризованих тіл. Два роди електричних зарядів</td>
<td>2</td>
</tr>
<tr>
<td>Для демонстрації взаємодії одніймених і різномірних електричних зарядів. Склад: дві легкі металічні гілки, підвішени на тонких нитках, що кріпляться до ізоляційних</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1.6. Комплект паличок для трибоелектризації
Палички діаметром не менше 1 см:
- Пластикова паличка – 1;
- Скляна паличка – 1;
- Тканина для натирання – 2

1.7. Штатив електростатичний
Склад:
- масивна основа - 1;
- стрижень з ізоляційного матеріалу - 1;
- елементи для кріплення електростатичних сувій та електростатичного манятника – 2

1.8. Конденсатор розбірний
Для демонстрації будови конденсатора змінної ємності (за рахунок зміни відстані між пластинами).
Складається з двох металевих пластин (рухома і нерухома) на підставці, що дає змогу регулювати відстань між ними за допомогою гвинта, електрично не з'єднані між собою. Має лінійку-шкалу для визначення відстані між пластинами, пластини мають штепсельні клеми. Діаметр пластини не менше 20 см.

1.9. Набір демонстраційний «Електродинаміка»
Для демонстрації з розділу «Електрика та магнетизм»
Склад набору:
- набір модулів (не менше 40 штук) електротехнічних елементів у пластмасових корпусах із зображеннями елементів та їх номіналів на зовнішній поверхні з магнітним кріпленням - 1;
- вимірювальні прилади (вольтметр - 1, амперметр - 1) з магнітним кріпленням або мультиметр на магнітній підставці - 1;
- блок живлення 0-12 В, 2 А – 1;
- комплекс з'єднувальних провідників – 15;
- дошка металева демонстраційна (за потреби) – 1;
- ящик для транспортування та зберігання – 1.

1.10. Машинна електрична (двигун-генератор)
Для демонстрації будови і принципу дії найпростішого генератора і електричного двигуна постійного і змінного струму. Статор і раму пофарбовано в кольори постійного магніту. Напруга живлення електродвигуна не більше ніж 12 В.
Склад:
- статор спеціальної форми - 1;
- рамка - 1;

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>1.11. Котушка дросельна</td>
<td>Котушка на пластмасовому каркасі, поділена на нерівні частини. Кінці обмоток кожної частини виведені на клеми</td>
<td>Явинше електромагнітної індукції. Демонстраційні досліди з електродинаміки</td>
<td></td>
</tr>
<tr>
<td>1.12. Магніт U-подібній демонстраційний</td>
<td>Намагніченій стальний брусок U-подібної форми з двоколірним фарбуванням для демонстраційних дослідів з магнетизму та електромагнітазму</td>
<td>Явинше електромагнітної індукції. Дія магнітного поля на струм. Постійні магніти. Конфігурації магнітних полів</td>
<td></td>
</tr>
<tr>
<td>1.13. Магніт штабовий демонстраційний (пара)</td>
<td>Для демонстраційних дослідів з магнетизм та електромагнітазму. Намагнічені 2 стальні бруски прямолінійної форми з двоколірним фарбуванням</td>
<td>Явинше електромагнітної індукції. Дія магнітного поля на струм. Постійні магніти. Конфігурації магнітних полів</td>
<td></td>
</tr>
<tr>
<td>1.14. Електромагніт розбірний (підковоподібний)</td>
<td>Осереддя з м'якої сталі U-подібної форми, до кінців якого причіплені дві однакові котушки, намотані на пластмасові каркаси із затискачами для під’єднання джерела живлення демонстраційного. Котушки з’єднані послідовно. Напруга живлення 4-6 В постійного струму. Додається стальний якір з гачком для підвішування вантажів</td>
<td>Електромагніт. Дослідження підйомної сили електромагніту і його будови</td>
<td></td>
</tr>
<tr>
<td>1.15. Прилад для демонстрації правила Ленца</td>
<td>Прилад – легке керамічно, один кінець якого виконано у вигляді замкненого кільця, а інший – розімкненого. Коромисло підвищене під’їздоком на вістрі, вмонтованому в підставку</td>
<td>Явинше електромагнітної індукції</td>
<td></td>
</tr>
<tr>
<td>1.16. Прилад для вивчення явища електромагнітної індукції</td>
<td>Прилад складається з двох котушок та осереддя. Кожна котушка має клеми для під’єднання джерела живлення або вимірювального приладу</td>
<td>Явинше електромагнітної індукції</td>
<td></td>
</tr>
<tr>
<td>1.17. Комплект з електролізу демонстраційний: діелектрична посудина з кришкою, на якій змонтовано два універсальні затискачі - 1; електрод із графіту – 2; електрод із свинцю – 2; електрод із цинку – 1; електрод із міді – 1; електрод із нержавіючої проволоці – 2; пробірка хімічна – 2; корок з держаком – 1</td>
<td>Електроліз</td>
<td>Демонстрація діа- та парамагнітазму. Демонстрація магнітного гістерезису. Демонстрація точки Кюрі. Демонстрація явища електромагнітної індукції. Демонстрація явища самоіндукції.</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>1.19. Набір для демонстрації залежності опору провідника від його геометричних параметрів:
панель із провідниками, виготовлені з однакової речовини, але різними за перерізом (від 5 елементів) – 1;
реохорд демонстраційний, довжина 1 м - 1</td>
<td></td>
<td>Демонстрація котушки Томпсона.
Демонстрація роботи трансформатора змінного струму.
Демонстрація принципів передачі енергії в мережах змінного струму</td>
<td>1</td>
</tr>
<tr>
<td>1.20. Набір провідників в ізоляції:
багатошарова мідь перерізом від 1 мм², загальна товщина від 3 мм, тип «банан» з можливістю присвячення іншого провідника з торцевої сторони штекцера:
дляжина 0,25 м – 1;
дляжина 0,5 м – 1;
дляжина 0,75 м – 1;
дляжина 1,0 м – 1.
Кольори сіній та червоний. Можливість присвячення до всіх клем штексельних провідників 5 мм</td>
<td></td>
<td>Демонстрація діа- та парамагнетизму.
Демонстрація магнітного гістерезису.
Демонстрація точки Кюрі.
Демонстрація явища електромагнітної індукції.
Демонстрація явища самоіндукції.
Демонстрація котушки Томпсона.
Демонстрація роботи трансформатора змінного струму.
Демонстрація принципів передачі енергії в мережах змінного струму</td>
<td>1</td>
</tr>
<tr>
<td>2. Обладнання для лабораторних робіт
1.1. Набір лабораторний «Електрика та магнетизм»
Склад набору:
набірне поле (якщо принцип з'єднання потребує) - 1;
модулі (не менше 40 штук) електротехнічних елементів для складання електричних кіл з вказівкою позначки та номіналу елемента – не менше 30;
комплект з’єднувальних провідників - 6;
вимірювальні прилади (вольтметр - 1, амперметр - 1) або мультиметр – 1;
блок живлення 0 - 12 В, 2 А – 1;
ящик для транспортування та зберігання – 1.
Можливе додаткове обладнання</td>
<td></td>
<td>Вимірювання опору провідника за допомогою амперметра й вольтметра.
Дослідження електричного кола з послідовним та паралельним з’єднанням провідників.
Вимірювання ЕРС і внутрішнього опору джерела струму.
Вимірювання ємності конденсатора.
Визначення енергії зарядженого конденсатора.
Дослідження транзистора</td>
<td>2 - 15*</td>
</tr>
<tr>
<td>2.1. Електромагніт розбірний лабораторний (підковоподібний)
Для дослідження підкової силі електромагніту і його будови при виконанні лабораторної роботи. Складається з осердя з м’якої сталі U-подібної форми, до кінців якого причіплені дві</td>
<td></td>
<td>2 - 15*</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>1</td>
<td>однакові котушки, намотані на пластмасові каркаси із затискачаю для під'єднання джерела живлення демонстраційного. Котушки з'єднані послідовно і мають загальний опір приблизно 3 Ом. Напруга живлення 4-6 В постійного струму. До електромагніту додається стальний якір з гачком для підвішування вантажів</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.3. Котушка-моток</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Для вивчення магнітного поля струму, взаємодії котушки зі струмом і магнітом, дослідження явища електромагнітної індукції.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Дротяний контур, намотаний на пластмасовий каркас. Опір котушки приблизно 10 Ом</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.4. Комплект магнітів штабових</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Намагнічені стальні бруски прямолінійної форми з двоколірним фарбуванням – 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.5. Підковоподібний магніт</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Намагніченний стальний бруском підковоподібної форми з двоколірним фарбуванням - 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.6. Прилад для вивчення залежності опору металу від температури</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Прилад у вигляді котушки-провідника, що розміщений у посудині для заповнення її гарячою водою</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.7. Реостати лабораторні</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A) Реостати лабораторні на керамічному каркасі довжиною не менше 10 см, мають не менше 3 клейм:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>реостат лабораторний з максимальним опором дроту 4-10 Ом – 1;</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>реостат лабораторний з максимальним опором дроту 20-50 Ом – 1;</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>реостат лабораторний з максимальним опором дроту 100-300 Ом – 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.8. Набір провідників в ізоляції:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>багатошарова мідь перерізом від 1 мм², загальна товщина від 3 мм, тип «банан» з можливістю приєднання іншого провідника з торцевої сторони штекера:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>довжина 0,25 м – 1;</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>довжина 0,5 м – 1;</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>довжина 0,75 м – 1;</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>довжина 1,0 м – 1;</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Кольори синій та червоний. Можливість приєднання до усіх клейм штекельних провідників 5 мм</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VI. Оптика та атомна фізика</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1. Набір «Геометрична оптика»</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Дозволяє проводити та демонструвати експерименти з геометричної оптики безпосередньо на металевій класній дощці або на спеціальній магнітній панелі.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Набір містить:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>елементи з магнітним кріпленням – 2;</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>освітлювачі з магнітним кріпленням – 2;</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>призми акрілові або скляні розміром не менше 15 см – 2;</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>лінзи – 2;</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Прямокутне поширення світла.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Відбивання світла.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Зображення в плоскому дзеркалі.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Заломлення світла.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Хід променів у лінзах.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Утворення зображень за допомогою лінзи</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>1</td>
<td>пустотіла кругла оптична кювета з градуованням та магнітним кріпленням – 1; прозорі моделі оптичних об’єктів – 1; дзеркало – 1; світлофільтри - 3; монтажне пристосування - 1; ящик для транспортування та зберігання з ложементами – 1. Можливе додаткове обладнання</td>
<td></td>
<td>Будова та дія оптичних приладів (фотоапарат, проєкційний апарат тощо). Модель ока</td>
</tr>
<tr>
<td>1.2. Модель ока</td>
<td>Для демонстрації будови ока як оптичної системи. Розбірка копія ока людини, збільшена у 5 – 10 разів</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3. Набір з оптики демонстраційний настільний</td>
<td>Оптична лава із пристосуваннями: цифрована металева рейка на опорах з можливістю регулювання за профілем столу, на яку встановлюються всі необхідні для демонстрації оптичні елементи. Довжина не менше 1 м - 1, кріплення для оптичного приладдя (рейтери) – 4; тримач для лінз – 2; тримач для зразків у рамці – 2; тримач для зразків із затискачем – 1; набір збіральних лінз – 3; набір розбіральних лінз – 2; набір дифракційних граток – 3; освітлювач – 1; екран напівпрозорий – 1; об’єкт для демонстрації – 1; бідзеркало – 1; об’єкт «Кільця Ньютон» - 1; набір світлофільтрів – 1; NeNe або напівпровідниковий лазер не вище 2 класу зі стрижнем для фіксації, обладнаний ключем-вимикачем, що запобігає ввімкненню лазера сторонніми особами – 1</td>
<td>Прямолінійне поширення світла. Відбивання світла. Зображення у плоскому дзеркалі. Заломлення світла. Хід променів у лінзах. Утворення зображення за допомогою лінзі</td>
<td>1</td>
</tr>
<tr>
<td>1.4. Набір для демонстрації «Хвильова оптика»</td>
<td>Склад: напівпровідниковий лазер з блоком живлення - 1; призма зі скла «Флінгт» - 1; збірка «Кільце Ньютон» - 1; біпризма Френеля - 1; об’єкти для спостереження дифракції - 5; дифракційні гратки (набір) - 1; поляроїді (набір) - 1;</td>
<td>Демонстрація явища інтерференції світла. Демонстрація явища дифракції світла. Демонстрація явища поляризації світла. Демонстрація дисперсії світла у прозорих середовищах</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>бідзеркало - 1; світлофільтр - 1; лінзи (набір) - 1; деталі для закріплення оптичних елементів (комплект) - 1</td>
<td></td>
<td>Принцип дії лічильника іонізаційних частинок. Дозиметри</td>
<td>1</td>
</tr>
<tr>
<td>1.5. Дозиметр</td>
<td>Для контролю радіаційної обстановки. Основні технічні характеристики: діапазон потужності експозиційної дози Υ- і β-випромінювання, мкР/г, − не вузче ніж 0,0 – 999; енергія Υ- і β-випромінювання не менше ніж 0,1 – 1,25 МeВ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Обладнання для лабораторних робіт</td>
<td></td>
<td>Дослідження відбивання світла за допомогою плоского дзеркала. Дослідження заломлення світла. Визначення фокусної відстані та оптичної сили тонкої лінзи. Спостереження інтерференції світла. Спостереження дифракції світла. Визначення довжини світлової хвилі. Вивчення явища поляризації світла. Спостереження неперервного і лінійчатого спектрів речовини. Спостереження утворення різних кольорів, отримання білого світла</td>
<td>2 - 15*</td>
</tr>
<tr>
<td>2.1. Набір лабораторний «Оптика 1»</td>
<td>Для виконання лабораторних робіт під час вивчення розділу «Геометрична оптика». Набір містить: освітлювач – 1; призма – 1; лінза збиральна – 2; лінза розсіювальна – 1; екран – 1; дзеркало – 1; затвори із прорізами – 2; дзерело живлення – 1; набір світлофільтрів – 6; прилад для змішування кольорів – 1; ящик для транспортування та зберігання з ложементами – 1. Можливо додаткове обладнання</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.2. Набір лабораторний «Оптика 2»</td>
<td>Для виконання лабораторних робіт під час вивчення розділу "Хвильова оптика". Набір містить: освітлювач – 1; оптична лава – 1; дзерело живлення – 1; дифракційні гратки з різним періодом – 4; ящик для транспортування та зберігання з ложементами – 1. Можливо додаткове обладнання</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.3. Комплект фотографій треків заряджених частинок</td>
<td>Для ознайомлення з методами вивчення треків заряджених частинок, їх маси, енергії, за радіусами кривизни треків (за умови відомого магнітного поля); аналізу треків заряджених частинок у магнітному полі; ідентифікації досліджуваної частинки</td>
<td>Дослідження треків заряджених частинок за фотографіями</td>
<td>2 - 15*</td>
</tr>
<tr>
<td>2.4. Спектроскоп з набором спектральних ламп</td>
<td>Однотрубний або двотрубний спектроскоп з набором спектральних ламп для візуального спостереження неперервного і лінійчатого спектрів речовини</td>
<td></td>
<td>2 - 15*</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>спостереження лінійчатих спектрів; вимірювання довжин хвиль випромінювання газів. Напруга живлення ~ 220 В, 50 Гц; робочі гази: аргон, Ar+Hg, Ar+ZnS (або інші)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VII. Астрономія</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Демонстраційне обладнання</td>
<td>1.1. Приклади, моделі</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>А) Телурій: рухома модель, що демонструє рух Землі навколо Сонця та рух Місяця навколо Землі. Має підсвітку моделі Сонця та оціфрований лімб розміщення Землі за місяцями року</td>
<td>Телурій</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Б) Модель "Сонячна система": демонструє будову Сонячної системи і дає уявлення про розмір Сонця, усіх планет Сонячної системи і приблизну відстань кожної планети від Сонця, їх місце в Сонячній системі</td>
<td>Модель "Сонячна система"</td>
<td></td>
</tr>
<tr>
<td></td>
<td>В) Оптичний телескоп: апертура телескопа 200 мм, світлосила 6. Склад: оптична труба системи Ньютонна на монтуванні Добсона – 1, окуляри – 2</td>
<td>Оптичний телескоп. Вивчення видимого зоряного неба</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Г) Рухома карта зоряного неба: пристрій для орієнтації на небі у Північній півкулі</td>
<td>Робота з картою зоряного неба. Положення світіл на небесній сфері. Екваторіальні системи небесних координат</td>
<td></td>
</tr>
<tr>
<td>VIII. Додаткове обладнання</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Обладнання загального призначення</td>
<td>1.1. Приклади</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>А) Цифровий мікроскоп: Мікроскоп працює за принципом цифрової камери - збільшує об’єкт, робить зміки й передає на комп’ютер, де за допомогою спеціалізованого програмного забезпечення можна проводити дослідження в режимі реального часу та архівувати отримані результати. Працює у режимі веб-камери, мікроскопа з можливістю вимірювати лінійні величини</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Б) Цифровий фотоапарат: працює у режимі цифрового фотоапарата та відеокамери. Дозволяє проводити покадрову та серійну фотовізьоміку, здійснювати швидкісну відеозйомку з частотою кадрів до 600 к/с. Має вбудований фотоапарат</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>В) Фотоштатив: забезпечує кріплення цифрового фотоапарата за допомогою стандартної гвинтової різьби. Має регульований майданчик для кріплення. Забезпечує встановлення фотоапарата на висоті не менше 1 м</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Г) Магнітний перемішувач з підігрівом: для перемішування рідин у скляних колбах за допомогою обертового якоря, що приводиться у дію опорядковано через рухомий магніт в основі перемішувача з регульованою швидкістю обертання якоря та підігрівом поверхні до температури не вище 120°С</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
11. Цифрове вимірювальне обладнання, прилади загального призначення, посуд загального призначення, обладнання та посуд загального та спеціального призначення, колекції, моделі, набори, графічні та друковані засоби, реактиви, витратні матеріали для кабінету хімії повинні відповідати вимогам, наведеним у таблиці 6:

<table>
<thead>
<tr>
<th>Назва засобу/обладнання</th>
<th>Технічне завдання</th>
<th>Демонстрації та лабораторні роботи (за навчальною програмою)</th>
<th>Кількість</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>I. Цифрове вимірювальне обладнання</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Цифрове вимірювальне обладнання</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1. Цифровий вимірювальний комп’ютерний комплекс для кабінету хімії</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>А) Цифровий вимірювальний комп’ютерний комплекс для вчителя:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>цифровий вимірювальний комп’ютерний комплекс для кабінету хімії підключається до USB-порту комп’ютера, має можливість бездротового та/або дротового способу під’єднання, або має автономний режим роботи з безпосереднім виведенням результатів на вбудований екран з можливістю подальшої їх перенесення для обробки до основного комп’ютера. Комплекс супроводжується керівництвом з експлуатації, методичним посібником та</td>
<td>Демонстрації</td>
<td>Взасмодія харчової соди (натрій гідрогенкарбонату) з оцтом (водним розчином етанові кислоти). Хімічні реакції, що супроводжуються виділенням газу, випаданням осаду, зміною забарвлення, появою запаху,</td>
<td>1</td>
</tr>
</tbody>
</table>